Hengstler(亨士乐)编码器 - 西安德伍拓自动化传动系统有限公司
首页 技术知识

编码器输出的是什么信号

编辑:Hengstler(亨士乐)编码器    发布时间:2022-04-19 13:08:10

摘要:编码器输出的是什么信号?Hengstler编码器工程师需要从几个方面进行评估。无论是增量编码器的正交输出,换向编码器的电机极输出,还是使用特定协议的串行输出,这些编码器输出都是数字信号。
编码器输出的是什么信号

电子电机控制装置通常需要接近编码器来感应转子位置或速度。为了选择合适的设备,Hengstler编码器工程师需要从几个方面进行评估。第一步是确定应用程序是否需要增量编码器、绝对编码器或换向编码器。一旦确定,必须考虑其他参数,如分辨率、安装类型、电机轴尺寸等。

最合适的输出信号类型并不总是显而易见的,往往被忽略。最常见的三种类型是集电极开路输出、推挽输出和差分线路驱动器输出。西安德伍拓工程师将分别介绍这三种输出类型,以帮助工程师根据其特定的应用需求选择合适的设备。

首要原则

无论是增量编码器的正交输出,换向编码器的电机极输出,还是使用特定协议的串行输出,这些编码器输出都是数字信号。因此,5 V 编码器的信号会一直在近似 0 V 与 5 V 之间切换,这两个电压分别对应逻辑 0 和 1。增量编码器的输出是基本方波,如图 1 所示。

图 1:数字编码器的通用方波输出。

开集输出

旋转编码器大多采用开集输出(图 2),即输入信号为高电平时,晶体管的集电极引脚保持开路或断开。当输出为低电平时,输出直接接地。

图 2:开集输出原理图。

由于输入信号为高电平时输出断开,需要使用外部“上拉”电阻,才能确保集电极电压达到所需的电平,即逻辑 1。因此,工程师在连接不同电压的系统时就更具灵活性:通过上拉电阻可将集电极电压上拉至不同电压,使之高于或低于编码器工作电压(图 3)。

图 3:集电极输出可上拉至适当电压以连接至外部系统。

不过,这种接口也具有一些缺陷。许多现成的Hengstler编码器控制器都已内置了上拉电阻,而这些上拉电阻会消耗电流,即产生耗散功率。此外,当该电阻与寄生电容组成 RC 电路时,输出在高电压与低电压之间的转换速率将因此降低。转换斜率(图 4)即转换速率。

图 4:当输出在两种逻辑状态之间转换时,上拉电阻会显著降低输出电压转换速率。

通过降低转换速率,上拉电阻会显著降低编码器运行速度,从而降低增量编码器的分辨率。减小电阻值可以提高转换速率,但是当信号为低电平时,上拉电阻功耗的电流更大,耗散功率也更大。

推挽输出

推挽输出使用两个晶体管,而不是一个(图 5),因此可以弥补上述开集输出接口的缺陷。上部晶体管取代上拉电阻,导通时可将电压上拉至电源电压,由于电阻极小,因而转换速率较快。而输出信号为低电平时,晶体管关断,因此相较于开集电路,该有源上拉电路的耗散功率也相对较小,从而使电池供电设备的运行时间相对较长。

图 5:推挽输出

CUI 的AMT 系列单端编码器都使用推挽输出,因此无需上拉电阻即可连接外部电路。除了提高速率和降低耗散功率外,推挽输出还可简化测试和原型开发。此外,AMT 编码器还具有 CMOS 输出。由于设备的高低电压各不相同,因此应参考规格书以确定如何转换输出电压。

差分线路驱动器输出

虽然使用推挽输出的编码器弥补了开集输出的一些缺陷,但两者都是单端输出。在布线距离较长的应用或存在电噪声和干扰的环境中,使用单端输出具有一定局限性。

布线距离较长时,信号幅度衰减,电容效应将减慢转换速率。由于单端信号的传输信号以地为参考,这类衰减就可能产生误差,从而导致系统性能下降。

此外,在电噪声环境中,不同幅度的干扰电压都将耦合到电缆上,从而导致单端系统的接收器错误地解码信号电压。

电缆长度超过一米时,CUI 建议使用差分信号。使用差分线路驱动器的编码器可产生两个输出信号:一个与原始信号相匹配,另一个与之完全相反,即互补信号。这两个信号之间的幅度差是原始单端信号的两倍,有助于克服电压降和电容引起的衰减问题(图 6)。

图 6:差分线路驱动器克服了信号衰减问题。

此外,由于两个信号均存在共模噪声,可以相互抵消,因此接收系统可忽略其影响(图 7)。由于噪声抑制能力相当出色,差分线路驱动器接口广泛用于工业和汽车应用。多种 CUI 编码器都提供差分线路驱动器输出选项,可用于要求严苛的应用。

图 7:差分接收器可忽略两个信号上同时存在的噪声。

综上所述,本文简要介绍了编码器的三种输出类型及其相对优势,可以帮助工程师考虑最佳的功耗、可靠的通信、合理的链路距离和足够的抗干扰能力来选择最佳的应用设备。

了解更多关于编码器知识,请关注德国Hengstler编码器国内正规授权代理西安德伍拓自动化传动系统有限公司网站。

近期发布

简单了解Hengstler生产的CANopen绝对式编码器在特殊质量、工业质量、经济质量上的差异
Hengstler为您介绍带开关编码器的工作原理和接线。
伺服电机编码器损坏的原因、防止、检测方法。
Hengstler绝对值编码器噪声问题的解决方法。
Hengstler编码器是如何进行速度测量的?
在电机运行过程中Hengstler编码器是怎么工作的?
PLC通过Hengstler编码器如何准确的判断位置?
旋转编码器在各个应用领域有什么作用?
采购防爆编码器需要注意的三个方面
编码器的占比在工业4.0的发展中变得越来越高。
Hengstler编码器对生产型企业的重要性?
Hengstler编码器码盘的安装方法及其注意事项?
磁性编码器为征服恶劣环境而生!
Hengstler重载编码器在起重机中的应用
Hengstler编码器在堆取料机定位上的应用
堆取料机如何通过PLC和编码器来实现夹角保护
编码器联轴器安装方法以及注意事项
AX65防爆编码器满足特殊应用场合。
2022-2028防爆编码器市场分析
增量编码器如何判断正反转?
绝对值编码器的数据采集方式是如何实现的?
绝对值编码器的信号输出方式有哪些?
如何从外观判断编码器的质量好坏?
Hengstler编码器通信接口之CC-Link
关于编码器的防护等级IP该如何选择?
无轴承编码器的应用您了解吗?
数控机床原点出现偏差故障不一定是由编码器导致哦。
编码器应用在电动卷帘门时要整理好数据线哦
磁编码器的结构、工作原理、优势、应用及其市场分析。
Hengstler电容式编码器的特点,有哪些优势?